МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Кафедра Естественнонаучных дисциплин

Аннотация рабочей программы дисциплины

Б1.Б.19 ФИЗИЧЕСКАЯ ХИМИЯ

Направление подготовки: 19.03.01 Биотехнология

Профиль подготовки: Пищевая биотехнология

Уровень высшего образования — **бакалавриат (академический)** Квалификация — **бакалавр**

Форма обучения - очная

1 Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП 1.1 Цель и задачи дисциплины

Бакалавр по направлению подготовки 19.03.01 Биотехнология должен быть подготовлен к научно-исследовательской и производственно-технологической деятельности.

Цель дисциплины: формирование теоретических знаний и практических умений, обеспечивающих подготовку студентов по основам физической химии, необходимым для осуществления биотехнологических процессов, исследования физико-химических свойств пищевого сырья и готовой продукции в соответствии с формируемыми компетенциями.

Задачи дисциплины:

- изучение состояния веществ, основных законов и свойств растворов в зависимости от их агрегатного состояния, термодинамики и кинетики химических процессов, кинетики поверхностных явлений и законов адсорбции;
- формирование представлений о твёрдом, жидком и газообразном состоянии вещества и особенностях их физико-химических свойств; о влиянии термодинамических и кинетических факторов на скорость и направленность биотехнологических процессов; о роли поверхностных явлений в обеспечении качества пищевых продуктов;
- формирование практических навыков в подготовке, организации и выполнении эксперимента, предусматривающего определение физико-химических характеристик пищевых систем, включая использование современных приборов и оборудования, в том числе практических навыков, значимых для будущей профессиональной деятельности.

1.2 Планируемые результаты обучения по дисциплине (показатели сформированности компетенций)

Планируемые результаты	Планируемые результаты обучения по дисциплине (ЗУН)				
освоения ОПОП (компетенции)	знания	умения	навыки		
ОПК-2 способность и	законы Рауля, Вант-	определять	владение		
готовность использовать	Гоффа, Ламберта -	показатели	рефрактометрическим,		
основные законы	Бугера - Бэра,	преломления и	фотоколориметрическим,		
естественнонаучных	факторы, влияющие на	поглощения,	криоскопическим		
дисциплин в	скорость химической	рассчитывать	методами исследования		
профессиональной	реакции, кинетическая	концентрацию,	растворов; методикой		
деятельности, применять	классификация	температуру	расчёта концентраций		
методы математического	реакций, виды	кипения и	растворов; методами		
анализа и моделирования,	катализа;	замерзания	расчета скорости и		
теоретического и	поверхностные	растворов,	направленности		
экспериментального	явления, поверхностная	осмотическое	химической реакции		
исследования	энергия, поверхностное	давление, строить			
	натяжение водных	калибровочный			
	растворов, ПАВ и	график и определять			
	ПИНВ; адсорбционное	по нему			
	равновесие, теория и	концентрацию			
	уравнение Ленгмюра	растворов;			
		применять законы			
		химической			
		кинетики при			
		выполнении			
		биотехнологических			
		процессов;			
		применять			
		теоретические			
		закономерности			

	T	1	1	
		поверхностных		
		явлений к пищевым		
		системам с целью		
		обеспечения		
		качества продукции		
ОПК-3 способность	классификация	определять реакцию	владеть	
использовать знания о	растворов, ионное	среды растворов и	потенциометрическим	
современной физической	произведение воды и	буферных систем,	методом исследования	
картине мира,	его следствия, рН,	рассчитывать	растворов, методами	
пространственно-	буферные растворы;	буферную емкость,	оценки свойств	
временных	знание дисперсных	определять степень	дисперсных, в том числе	
закономерностях,	систем, их	дисперсности	коллоидных систем,	
строении вещества для	классификации и	сложных систем и	способами воздействия на	
понимания окружающего	особенностей, понятие	растворов,	поверхностные явления в	
мира и явлений природы	о коллоидном	проводить	гетерогенных дисперсных	
	состоянии вещества;	адсорбцию и	системах	
	особенности	десорбцию		
	физической и	-		
	химической адсорбции,			
	молекулярная			
	адсорбция			

2 Место дисциплины в структуре ОПОП

Дисциплина «Физическая химия» входит в Блок 1 основной профессиональной образовательной программы относится к ее базовой части (Б1.Б.19).

Междисциплинарные связи с обеспечивающими (предшествующими) и обеспечиваемыми (последующими) дисциплинами

	Этап Наименование дисциплины				
Компетенция	формирования компетенции в рамках дисциплины	Предшествующая дисциплина	Последующая дисциплина		
способность и готовность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ОПК-2)	базовый	Математика Методы математического анализа и моделирования Физика Общая и неорганическая химия Органическая химия Химия биологически активных веществ Экология Общая биология Основы биохимии и молекулярной биологии	Генная инженерия и нанобиотехнологии Биологически активные добавки к пище Государственная итоговая аттестация		
способность использовать знания о современной физической картине мира, пространственно-временных закономерностях, строении вещества для понимания окружающего мира и явлений природы (ОПК-3)	продвинутый	Физика Общая и неорганическая химия Общая биология Основы биохимии и молекулярной биологии	Государственная итоговая аттестация		

3 Объём дисциплины и виды учебной работы

Объем дисциплины «Физическая химия» составляет 5 зачетных единиц (180 академических часов). Распределение объём дисциплины на контактную работу с

преподавателем (КР) и на самостоятельную работу обучающихся (КР) по видам учебных занятий и по периодам обучения (в академических часах) представлено в таблице

№п/п	Виды учебных занятий	Итого КР	Итого СР	Семестр 4	
				KP	CP
1	Лекции	18	X	18	X
2	Лабораторные работы	36	X	36	X
3	Контроль самостоятельной работы	9	X	9	X
4	Самостоятельное изучение тем	X	42	X	42
5	Подготовка к тестированию	X	11	X	11
6	Подготовка к контрольной работе	X	16	X	16
7	Решение задач	X	21	X	21
8	Промежуточная аттестация	X	27	X	27
9	Наименование вида промежуточной	X	X	экзамен	
	аттестации				
10	Всего	63	117	63	117

4 Краткое содержание дисциплины

Раздел 1. Растворы как физико-химические системы.

Предмет и задачи дисциплины. Растворы как физико-химические системы: классификация, оптические, молекулярно-кинетические и электрокинетические свойства истинных растворов и дисперсных систем; растворов электролитов и неэлектролитов. Способы определения концентрации растворов.

Ионизация воды. Водородный показатель (рН), методы его определения.

Буферные системы, их свойства, механизм действия, применение.

Дисперсные системы, понятие классификация, свойства.

Раздел 2. Основы химической термодинамики и кинетики.

Закон сохранения энергии, виды энергии и понятие качества. Математическое выражение первого начала термодинамики. Тепловой эффект реакции. Закон Гесса. Обратимые и необратимые процессы. Математическое выражение второго начала термодинамики. Понятие об энтропии. Свободная энергия, факторы, влияющие на направление ее изменений.

Химическая кинетика и катализ, основные понятия. Скорость химической реакции. Факторы, влияющие на скорость реакции. Кинетическая классификация реакций. Понятие о порядке и молекулярности реакций, энергии активации. Катализ: гомогенный, гетерогенный, ферментативный. Значение катализа в биотехнологии.

Химическое равновесие и закон действующих масс. Константа равновесия.

Смещение химического равновесия. Принцип Ле-Шателье.

Раздел 3. Поверхностные явления и адсорбция.

Поверхность раздела фаз. Молекулярное взаимодействие на поверхности раздела. Свободная поверхностная энергия. Избыток свободной поверхностной энергии в коллоидных системах и пути его снижения. Классификация поверхностных явлений (адсорбция, адгезия, смачивание и капиллярные явления). Поверхностная активность, поверхностное натяжение жидкости, взаимосвязь с внутренним давлением. Методы измерения поверхностного натяжения растворов. Поверхностно-активные вещества (ПАВ) и инактивные вещества. Свойства ПАВ.

Адсорбция и ее виды. Кинетика адсорбции. Адсорбционное равновесие. Изотермы адсорбции. Молекулярная адсорбция на границе твердое тело - газ. Теория мономолекулярной адсорбции. Уравнение Ленгмюра. Адсорбция на гладких поверхностях и пористых адсорбентах, уравнение адсорбции Гиббса, капиллярная конденсация.

Адсорбция электролитов на границе твердое тело - раствор. Избирательная адсорбция ионов. Обменная адсорбция ионов. Адсорбция на границе раствор - газ. Хроматографический метод исследований.